New Advances In
Computer Modeling of
Chemical and
Biochemical Data

Nonlinear regression analysis has been successful for quantitative modeling of many types
of experimental data. Recent solutions to several long-standing problems in nonlinear
regression are reviewed in this paper. These include removal of correlations among
parameters as well as enhancing resolution in deconvolution of ill-resolved signals with

many component parts.

Orthogonalization of parameter space can remove correlations, resulting in precise
estimation of all parameters. Fourier deconvolution algorithms can be combined with
nonlinear regression to resolve severely-overlapped component bands in protein fourier
transform infrared (FT-IR) spectra, leading to complete secondary structural analysis.
These examples show that in instances where nonlinear regression cannot stand alone, its
combination with auxiliary mathematical methods can result in powerful analytical tools.

he ongoing microelectronics

revolution makes ever in-

creasing computer power

routinely available to the

physical scientist. Nonlinear
regression analysis has proven ex-
tremely useful in situations where in-
strumental data must be analyzed
quantitatively ~ with ~ mathematical
models to obtain the information re-
quired by the experimentalist.

Recent application highlights of non-
linear regression in chemistry include
titrations without the necessity of stan-
dardization, determination of large bi-
molecular rate constants from voltam-
metric data, multicomponent chemical
analysis from time-resolved fluores-
cence spectra, automated mechanistic
analysis, and extraction of diffusion co-
efficients for micellar aggregates from
electrochemical data.! In the biochem-
ical arena, new applications include de-
termination of the molecular basis for
salt induced solubility and colloidal sta-

bility of proteins, quantitative analysis
of field dispersion of NMR relaxation
rates for water interactions with pro-
teins, and mechanisms of the time de-
pendence of bacterial growth under a
variety of environmental conditions.>

Some traditional problems have long
plagued certain applications of nonlin-
ear regression analysis. These include
correlations among parameters and
lack of methods for dealing with inher-
ently ill-resolved signals with large
numbers of component parts. The lat-
ter problem may also involve parame-
ters which are highly correlated. In this
paper, we review recent approaches to
dealing with these two long-standing
barriers.

First, we discuss removal of parame-
ter correlation by orthogonalization of
the parameter space. Second, we
present a way to enhance resolution of
badly overlapped bands from protein
IR spectra via Fourier deconvolution
prior to nonlinear regression. This ap-
proach has been applied to determining
global secondary structure of proteins.
Both methods are general and can, in
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principle, be applied to a wide variety
of types of experimental data.

I. Removal of Parameter
Correlation by
Orthogonalization

Correlation. Nonlinear regression anal-
ysis seeks to find the best set of param-
eters of a mathematical model with re-
spect to a given set of data. With a
general regression program,!-2 the user
writes code for the model into a sub-
routine, and provides the program with
experimental data and starting “‘best
guesses’’ for the parameters. The pro-
gram then seeks a minimum in an ap-
propriate error sum, usually by making
use of the principle of least squares. By
this principle, the best values of the pa-
rameters are found at the minimum of
the error sum S (Eq. (1)):

= 21 [yj(meas) — yj(calc)]> (1)
&

where. yj(meas) are experimental data

and yj(calc) are computed from the re-

gression model for the n data points.
The purpose of the model subroutine is

to supply values of yj(calc) to the main - :

program.::
Sis mlnlmlzed by systematlc itera-

tive ‘variation ‘of the parameters by an - :

appropriate algorithm. The approach to
minimum S starting from a set of initial
“‘guesses’ for m parameters can be
thought of as the journey. of the initial
point toward the global minimum of an
error surface in an m + 1 dimensional
coordinate system called ‘‘parameter
space.””. One. axis of parameter space
corresponds to -S; the .others corre-
spond to the parameters The minimum
S is called the convergence point.

Two 1nterdependent parameters in a
regression. model are said to be corre-
lated, Their final values are interdepen-
dant and sensitive to the starting point
of the computation. If correlation. is
strong, convergence and/or unique es-
timates of each parameter can be diffi-
cult to achieve. Parameter correlation
is equivalent to_having nonorthogonal
axes in the parameter space.

An Example of Orthogonahzatlon.
Troublesome parameter correlation
arises in obtammg chemical rate con-
stants using a techmque called chrono-
coulometry. In this method, a step of
potential is apphed to a working elec-
trode and the accumulated charge pass-
ing through the electrochemical cell i is

recorded vs time. Models describing
charge response in chronocoulometry
are expressed in closed form as explicit
functions of time. Below, we present
the application of Gram-Schmidt ortho-
gonalization to chronocoulometry of
molecules reacting by an electron
transfer-chemical reaction-electron
transfer, or ECE, pathway.

The initial potential (E;) of the work-
ing electrode is chosen so that no elec-
trolysis occurs. At time t = 0, the po-
tential is rapidly pulsed to a potential
where the first electron transfer is so
fast that its rate does not influence the
shape of the charge-time response. Un-
der these conditions, the response Q(t)
for the ECE model is of the form:

Q(t) = b, + by[2 — (I1/4byt) "2 erf(b,t) 2]
+ bst. (2

The by, . . . ., b; are regression pa-
rameters. The rate constant for the
chemical step is k = by, and is gener-
ally the most desired parameter in this
type of analysis. Identities of the other
parameters are not relevant to our dlS-

_cussion.

Gram-Schmidt . orthogonalization
was used: to’ transform. Eq. (2) to.the

. form

Bihi(tj) + Byhy(t) + B3h3(ty By)
3)

where the hy(t) are the orthonormal
functions, the B, are the new set of pa-
rameters, and By = k. The reader is
referred to the original literature® for
details of the mathematlcal manipula-
tions.

This procedure defines a new orthog-
onal parameter space. Here, the most
desired parameter is By, which is deter-
mined by the regression analysis. The
other original parameters b; are com-
puted from the B; éstimated in the re-
gression analysis.

Gram-Schmidt orthogonalization of
the ECE reaction model ‘in single po-
tential step chronocoulometry totally
removed correlation between parame-
ters when using the Marquardt-Leven-
berg nonlinear regression algorithm.3
The orthogonalized ECE model was
used to estimate chemical rate con-
stants for decomposition of unstable
anion’ radicals - produced during- the
chronocoulometric reduction of aryl
halides in organic solvents. The ortho-
gonalized model eliminated divergence
problems and converged three to four
times faster than the nonorthogonal



model, making real-time kinetic analy-
ses possible on a microcomputer. Pre-
cision on the order of +6% for k = 10
s~! was obtained.

II. Secondary Structure of
Proteins by FT-IR

Introduction. Proteins are biopolymers
consisting of polypeptide chains of
amino acid molecules linked in a linear
fashion. In biological systems, proteins
function as catalysts for life supporting
chemical reactions and as structural
components of living organisms. In
their native state, polypeptide chains
fold in a complicated manner which is
essential to their biological function.
Folding patterns of proteins may be
characterized by periodic structures
such as helices, sheets, and extended
portions. Other structural units include
a variety of turns, loops, and disor-
dered coils. Determination of the way
the protein is folded is called secondary
structural analysis.

Secondary protein structure can be
determined by several types of instru-
mental methods such as x-ray crystal-
lography, nuclear magnetic resonance,
circular dichroism, and infrared spec-
troscopy. Since the development of
commercial FT-IR spectrometers,
methods for analyzing IR data are be-
ing developed to a high degree of accu-
racy and precision for determination of
global secondary structure of proteins.

The backbone of the polypeptide
chain absorbs infrared radiation, which
excites vibrational modes of chemical
linkages called amide bonds. Two of
these vibrational modes are of primary
importance. The first, the amide I vi-
bration, is primarily caused by stretch-
ing of carbon-oxygen double bonds.
The amide II vibration is due to
stretching of the nitrogen-hydrogen
bonds. Infrared spectroscopy mea-
sures the amount of light absorbed due
to these vibrations over a range of fre-
quencies of the incident light.

The frequencies at which amide I
and amide II bands appear are highly
dependent on the secondary structure
of the protein. However, individual
peaks for these vibrational transitions
are severely overlapped in FT-IR spec-
tra. This overlap needs to be resolved
before a complete structural analysis of
the protein can be made. Nonlinear re-
gression analysis coupled with Fourier
deconvolution has been successfully
applied to this problem.

FT-IR Analysis of Lysosyme. A typi-
cal FT-IR spectrum of hen egg white
lysosyme showing amide I and amide II
regions is given as the outer envelope
in Figure 1. This spectrum can be con-
sidered a sum of a variety of individual
bands which have been assigned to spe-
cific structural units of proteins.* Iden-
tification of all the components of the
spectrum by direct nonlinear regres-
sion would be a daunting task. To alle-
viate this dilemma, we first examine
the second derivative of the spectrum
(insert, Fig. 2) to find the number (n) of
component bands and their approxi-
mate positions.

The next step in the analysis is to
enhance the resolution of the original
spectrum via a Fourier deconvolution
algorithm developed by Kauppinen et
al.’ Care must be taken to choose the
correct values of line width and resolu-
tion enhancement factors used by this
algorithm so that the FT-IR spectrum is
not over- or under-deconvoluted. Un-
der-deconvolution is recognized by the
absence of a band indicated by a peak
in the second derivative spectrum.
Over-deconvolution results in the ap-
pearance of large side lobes in the base-
line region of the deconvoluted spec-
trum.$

Quantitatively, analysis of the
Fourier deconvoluted spectrum by
nonlinear regression analysis is also
used to help choose the Fourier decon-
volution parameters. A model com-
posed of the sum of a series of gaussian
peaks is fit to the deconvoluted spec-
trum (Fig. 2) by nonlinear regression:

A= 21 hfexp{—(x — x)2/2W;] (4)
£

where A is absorbance, W; is peak
width, x; is frequency in cm™!, and by is
the peak height. Wj, x;, and h; for the n
peaks are the parameters optimized by
the regression analysis. A baseline
term is generally not needed after
proper background subtraction.
Quantitative criteria to insure cor-
rect deconvolution are: 1) correlation
of all band assignments with the second
derivative peaks; 2) agreement of cal-
culated and experimental baselines; 3)
a standard deviation of regression =<
experimental noise; 4) a successful fit
of the model to the original spectrum
using fixed frequencies found by fitting
the deconvoluted spectrum. In prac-
tice, attainment of these criteria may
require several cycles of deconvolution



FIGURE 1 FT-IR spectrum showing
amide I and amide II bands of
lysosyme in aqueous solution. The
outer envelope line is the original
spectrum. Crosses on the outer
envelope and individual component
peaks underneath are the results of
final regression analysis as described
in text. The inset shows plot of
residuals or deviations of calculated
and experimental absorbances vs
frequency.
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and regression until optimal deconvo-
lution is achieved.

Criterion 4 involves using the results
of the regression analysis of the decon-
voluted spectrum (Fig. 2) on Eq. (4) to
provide the frequencies of the n bands.
These frequencies are fixed, and the
model with the same number of bands
and frequencies is then fit to the origi-
nal spectrum.

The final fit to the lysosyme FT-IR
spectrum is shown in Figure 1 with its
29 component peaks. The inset (Fig. 1)
shows that the residuals of the regres-
sion are reasonably random, a reliable
indication that the model explains the
data.! Calculated relative areas under
the component bands of the original
spectrum are in good agreement with
those calculated from results of the re-
gression analysis of the fourier decon-
voluted spectrum.®

Table 1 assigns component bands ob-
tained from the above analysis made by
reference to previous vibrational as-
signments.* From relative areas under

these bands, we can obtain the frac-
tional amounts of the different struc-
tural features in the polypeptide chain.
Replicate values of these fractions are
lobtained from amide I and amide II re-
igions. Good agreement between corre-
Isponding fractions adds confidence to
'this analysis. However, the amide I re-
| gion gives the best results because the
' components of the amide II region are
| inherently more poorly revolved.

The FT-IR structural analysis can be
compared with global secondary struc-
ture (Fig. 3) determined by x-ray crys-
tallography. Good agreement is ob-
tained (Table 1), noting that the
estimated extended and unordered
fractions from x-ray analysis are not
exact. In this example, fractional
amounts of helix and turns from FT-IR
and x-ray crystallography are quite
comparable. Such comparisons can be
used to determine whether the dynamic
structure in water, where the protein
maintains a structure more relevant to
its biological role, is the same as the
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TABLE 1 Secondary structural analysis of FI-IR of lysosyme.

Unordered
Assignments: Helix Extended (Loops) Turns
(cm™)
Amide | 1660 1637 1646 1691
1654 1629 1683
1623 1675
1668
Amide Il 1540 15632 1548 1578
1525 1571
1564
1556
Fractions: Helix Extended Unordered Turns
FT-IR Results: From Deconvoluted Spectrum
Amide | 0.324 = 0.014 0.204 + 0.012 0.131 = 0.003 0.311 = 0.013
Amide Il 0.278 = 0.012 0.175 = 0.010 0.183 = 0.045 0.364 = 0.101
From Original Spectrum
Amide | 0.260 0.117 0.170 0.318
Amide Il 0.323 0.176 0.090 0.411
X-ray Struc-
ture 0.310 0.155° 0.225° 0.310

a As fraction of B-turns only, does not include all the extended features of the protein.
b Difference between sum of other reported fractions and 1.
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FIGURE 2 Fourier deconvolution of
FT-IR spectrum of lysosyme in Figure
1. Crosses on the outer envelope and
individual component peaks
underneath were found by regression
analysis as described in text. The inset
shows the second derivative of the
original spectrum.



FIGURE 3 Orthogonal representations
of the x-ray crystal structure of
lysosyme. The right-hand view is
rotated 90° from the left-hand view.
Side chain color code: green,
hydrophobic; red, acidic; purple,
basic.

structure of the crystalline protein. The
same approach is being applied to other
proteins for which crystal structures
are available. The ultimate goal of this
work is to obtain a statistically signifi-
cant predictor of secondary structure
from the amino acid sequence of the
polypeptide.

Conclusions

The above examples demonstrate that
in instances where nonlinear regression
cannot stand alone, its combination
with auxiliary mathematical methods
can result in powerful analytical tools.
The two methods discussed are general
and complimentary. Gram-Schmidt
orthogonalization is applicable to
highly correlated models with small
numbers of parameters. Clearly, the
number of mathematical manipulations
to orthogonalize the model for the lyso-
syme FT-IR spectrum is prohibitive;
the model ends up having 29 peaks and

87 parameters. However, the combina-
tion of nonlinear regression with reso-
lution-enhanced Fourier deconvolution
is able to provide a physically meaning-
ful and self-consistent analysis. These
two methods should enable extension
of nonlinear regression to types of data
that were heretofore impossible to ana-
lyze with high precision.
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